未解決

    2011年考研數(shù)二考試大綱

    懸賞分:0
    2011年考研數(shù)二考試大綱

    熱點關(guān)注: 研究生招生簡章 歷年考研國家線 2017考研國家線

    提問者:lhy881005 - 2010/03/29 08:32

    我來回答

    - 回答即可得2分

    相關(guān)問答

    其他答案(3)

    2011年的考綱要到暑假前后才會公布,可以先參考2010年的數(shù)學(xué)二考綱,一般來說是不會有什么變動的。

    回答者:一休哥 - 2010/03/29 10:52

    11年考研數(shù)二大綱:
    高等數(shù)學(xué)
    一、函數(shù)、極限、連續(xù)
    考試內(nèi)容
    函數(shù)的概念及表示法 函數(shù)的有界性、單調(diào)性、周期性和奇偶性 復(fù)合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù) 基本初等函數(shù)的性質(zhì)及其圖形 初等函數(shù) 函數(shù)關(guān)系的建立 數(shù)列極限與函數(shù)極限的定義及其性質(zhì) 函數(shù)的左極限和右極限 無窮小量和無窮大量的概念及其關(guān)系 無窮小量的性質(zhì)及無窮小量的比較 極限的四則運算 極限存在的兩個準(zhǔn)則:單調(diào)有界準(zhǔn)則和夾逼準(zhǔn)則 兩個重要極限: 
    函數(shù)連續(xù)的概念 函數(shù)間斷點的類型 初等函數(shù)的連續(xù)性 閉區(qū)間上連續(xù)函數(shù)的性質(zhì)
        考試要求
    1. 理解函數(shù)的概念,掌握函數(shù)的表示法,會建立應(yīng)用問題的函數(shù)關(guān)系.
      2. 了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性.
    3. 理解復(fù)合函數(shù)及分段函數(shù)的概念了解反函數(shù)及隱函數(shù)的概念
    4. 掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念.
    5. 理解極限的概念,理解函數(shù)左極限與右極限的概念以及函數(shù)極限存在與左、右極限之間的關(guān)系.
    6. 掌握極限的性質(zhì)及四則運算法則
    7. 掌握極限存在的兩個準(zhǔn)則,并會利用它們求極限,掌握利用兩個重要極限求極限的方法.
    8. 理解無窮小量、無窮大量的概念,掌握無窮小量的比較方法,會用等價無窮小量求極限.
    9. 理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會判別函數(shù)間斷點的類型.
    10. 了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)一的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理),并會應(yīng)用這些性質(zhì).
    二、一元函數(shù)微分學(xué)
      考試要求
    1. 理解導(dǎo)數(shù)和微分的概念,理解導(dǎo)數(shù)和微分的關(guān)系,理解導(dǎo)數(shù)的幾何意義,會求平面曲線的切線方程和法線方程,了解導(dǎo)數(shù)的物理意義,會用導(dǎo)數(shù)描述一些物理量,理解函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系.
    2. 掌握導(dǎo)數(shù)的四則運算法則和復(fù)合函數(shù)的求導(dǎo)法則,掌握基本初等函數(shù)的導(dǎo)數(shù)公式.了解微分的四則運算法則和一階微分形式的不變性,會求函數(shù)的微分.
    3. 了解高階導(dǎo)數(shù)的概念,會求簡單函數(shù)的高階導(dǎo)數(shù).
    4. 會求分段函數(shù)的導(dǎo)數(shù),會求隱函數(shù)和由參數(shù)方程所確定的函數(shù)以及反函數(shù)的導(dǎo)數(shù).
    5. 理解并會用羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并會用柯西( Cauchy )中值定理.
    6. 掌握用洛必達(dá)法剛求未定式極限的方法.
    7. 理解函數(shù)的極值概念,掌握用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性和求函數(shù)極值的方法,掌握函數(shù)最大值和最小值的求法及其應(yīng)用.
    8. 會用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性(注:在區(qū)間(a,b)內(nèi),設(shè)函數(shù)f(x)具有二階導(dǎo)數(shù)。當(dāng) >0時,f(x)的圖形是凹的;當(dāng) <0時,f(x)的圖形是凸的),會求函數(shù)圖形的拐點以及水平、鉛直和斜漸近線,會描繪函數(shù)的圖形.
    9. 了解曲率、曲率圓和曲率半徑的概念,會計算曲率和曲率半徑. 
    三、一元函數(shù)積分學(xué)
    考試內(nèi)容:原函數(shù)和不定積分的概念 不定積分的基本性質(zhì) 基本積分公式 定積分的概念和基本性質(zhì) 定積分中值定理 積分上限的函數(shù)及其導(dǎo)數(shù) 牛頓-萊布尼茨(Newton-Leibniz)公式 不定積分和定積分的換元積分法與分部積分法 有理函數(shù)、三角函數(shù)的有理式和簡單無理函數(shù)的積分反常(廣義)積分 定積分的應(yīng)用
    考試要求
    1. 理解原函數(shù)的概念,理解不定積分和定積分的概念.
    2. 掌握不定積分的基本公式,掌握不定積分和定積分的性質(zhì)及定積分中值定理,掌握換元積分法與分部積分法.
    3. 會求有理函數(shù)、三角函數(shù)有理式和簡單無理函數(shù)的積分.
    4. 理解積分上限的函數(shù),會求它的導(dǎo)數(shù),掌握牛頓一萊布尼茨公式.
    5. 了解反常積分的概念,會計算反常積分.
    6. 掌握用定積分表達(dá)和計算一些幾何量與物理量(平面圖形的面積、平面曲線的弧長、旋轉(zhuǎn)體的體積及側(cè)面積、平行截面面積為已知的立體體積、功、引力、壓力、質(zhì)心、形心等)及函數(shù)的平均值.
    四、多元函數(shù)微積分學(xué)
    考試要求
    1. 了解多元函數(shù)的概念,了解二元函數(shù)的幾何意義.
    2. 了解二元函數(shù)的極限與連續(xù)的概念,了解有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì).
    3. 了解多元函數(shù)偏導(dǎo)數(shù)與全微分的概念,會求多元復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù),會求全微分,了解隱函數(shù)存在定理,會求多元隱函數(shù)的偏導(dǎo)數(shù).
    4. 了解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會求二元函數(shù)的極值,會用拉格朗日乘數(shù)法求條件極值,會求簡單多元函數(shù)的最大值和最小值,并求解一些簡單的應(yīng)用問題.
    5. 了解二重積分的概念與基本性質(zhì),掌握二重積分的計算方法(直角坐標(biāo)、極坐標(biāo)).
    五、常微分方程
    考試內(nèi)容
    常微分方程的基本概念 變量可分離的微分方程 齊次微分方程 一階線性微分方程 可降階的高階微分方程 線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理 二階常系數(shù)齊次線性微分方程 高于二階的某些常系數(shù)齊次線性微分方程 簡單的二階常系數(shù)非齊次線性微分方程  微分方程的簡單應(yīng)用
    考試要求
    1. 了解微分方程及其階、解、通解、初始條件和特解等概念.
    2. 掌握變量可分離的微分方程及一階線性微分方程的解法,會解齊次微分方程
    3. 會用降階法解下列形式的微分方程: , 和 .
    4. 理解二階線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理.
    5. 掌握二階常系數(shù)齊次線性微分方程的解法,并會解某些高于二階的常系數(shù)齊次線性微分方程.
    6. 會解自由項為多項式、指數(shù)函數(shù)、正弦函數(shù)、余弦函數(shù)以及它們的和與積的二階常系數(shù)非齊次線性微分方程.
    7. 會用微分方程解決一些簡單的應(yīng)用問題.
    線性代數(shù)
    一、行列式
    考試內(nèi)容
    行列式的概念和基本性質(zhì) 行列式按行(列)展開定理
        考試要求 
        1.了解行列式的概念,掌握行列式的性質(zhì).
        2.會應(yīng)用行列式的性質(zhì)和行列式按行(列)展開定理計算行列式.
    二、矩陣 
    考試內(nèi)容
        矩陣的概念 矩陣的線性運算 矩陣的乘法 方陣的冪 方陣乘積的行列式 矩陣的轉(zhuǎn)置 逆矩陣的概念和性質(zhì) 矩陣可逆的充分必要條件 伴隨矩陣 矩陣的初等變換 初等矩陣 矩陣的秩 矩陣的等價分塊矩陣及其運算 
        考試要求
        1.理解矩陣的概念,了解單位矩陣、數(shù)量矩陣、對角矩陣、三角矩陣、對稱矩陣、反對稱矩陣和正交矩陣以及它們的性質(zhì).
        2.掌握矩陣的線性運算、乘法、轉(zhuǎn)置以及它們的運算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質(zhì).
        3.理解逆矩陣的概念,掌握逆矩陣的性質(zhì)以及矩陣可逆的充分必要條件.理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣.
        4.了解矩陣初等變換的概念,了解初等矩陣的性質(zhì)和矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的秩和逆矩陣的方法. 5.了解分塊矩陣及其運算.
    三、向量
    考試內(nèi)容
    向量的概念 向量的線性組合和線性表示 向量組的線性相關(guān)與線性無關(guān) 向量組的極大線性無關(guān)組 等價向量組 向量組的秩 向量組的秩與矩陣的秩之間的關(guān)系 向量的內(nèi)積 線性無關(guān)向量組的正交規(guī)范化方法 
        考試要求
        1.理解n維向量、向量的線性組合與線性表示的概念.
        2.理解向量組線性相關(guān)、線性無關(guān)的概念,掌握向量組線性相關(guān)、線性無關(guān)的有關(guān)性質(zhì)及判別法.
        3.了解向量組的極大線性無關(guān)組和向量組的秩的概念,會求向量組的極大線性無關(guān)組及秩.
        4.了解向量組等價的概念,了解矩陣的秩與其行(列)向量組的秩的關(guān)系
        5.了解內(nèi)積的概念,掌握線性無關(guān)向量組正交規(guī)范化的施密特(Schmidt)方法.
    四、線性方程組
    考試內(nèi)容
    線性方程組的克萊姆(Cramer)法則 齊次線性方程組有非零解的充分必要條件 非齊次線性方程組有解的充分必要條件 線性方程組解的性質(zhì)和解的結(jié)構(gòu) 齊次線性方程組的基礎(chǔ)解系和通解 非齊次線性方程組的通解
        考試要求
        1.會用克萊姆法則.
        2.理解齊次線性方程組有非零解的充分必要條件及非齊次線性方程組有解的充分必要條件.
        3.理解齊次線性方程組的基礎(chǔ)解系及通解的概念,掌握齊次線性方程組的基礎(chǔ)解系和通解的求法.
        4.理解非齊次線性方程組的解的結(jié)構(gòu)及通解的概念.
        5.會用初等行變換求解線性方程組.
    五、矩陣的特征值和特征向量
    考試內(nèi)容
    矩陣的特征值和特征向量的概念、性質(zhì) 相似矩陣的概念及性質(zhì) 矩陣可相似對角化的充分必要條件及相似對角矩陣 實對稱矩陣的特征值、特征向量及其相似對角矩陣
        考試要求
        1.理解矩陣的特征值和特征向量的概念及性質(zhì),會求矩陣的特征值和特征向量.
        2.理解矩陣相似的概念、性質(zhì)及矩陣可相似對角化的充分必要條件,會將矩陣化為相似對角矩陣.
        3.理解實對稱矩陣的特征值和特征向量的性質(zhì).
    六、二次型
    考試內(nèi)容
    二次型及其矩陣表示 合同變換與合同矩陣 二次型的秩 慣性定理 二次型的標(biāo)準(zhǔn)形和規(guī)范形用正交變換和配方法化二次型為標(biāo)準(zhǔn)形 二次型及其矩陣的正定性
        考試要求
        1.了解二次型的概念,會用矩陣形式表示二次型,了解合同變換與合同矩陣的概念.
        2.了解二次型的秩的概念,了解二次型的標(biāo)準(zhǔn)形、規(guī)范形等概念,了解慣性定理,會用正交變換和配方法化二次型為標(biāo)準(zhǔn)形.
        3.理解正定二次型、正定矩陣的概念,并掌握其判別法. 

    回答者:a074509 - 2010/07/31 06:02

    樓上提供的是2010年的大綱吧,2011年的現(xiàn)在還沒出來呢。不過可以參考,應(yīng)該不會有什么變動。

    回答者:ideafly - 2010/07/31 06:14

    網(wǎng)站介紹 | 關(guān)于我們 | 聯(lián)系方式 | 廣告業(yè)務(wù) | 幫助信息
    ©1998-2015 ChinaKaoyan.com Network Studio. All Rights Reserved.

    中國考研網(wǎng)-聯(lián)系地址:上海市郵政信箱088-014號 郵編:200092 Tel & Fax:021 - 5589 1949 滬ICP備12018245號

    欧洲人妻丰满av无码久久不卡 | 亚洲热妇无码AV在线播放| 亚洲av永久无码精品表情包| 亚欧无码精品无码有性视频| 最好看2019高清中文字幕| 秋霞无码一区二区| 最近免费中文字幕mv在线电影| 亚洲AV无码国产精品麻豆天美 | 亚洲Av永久无码精品三区在线| 亚洲AV无码成人精品区狼人影院 | 无码专区中文字幕无码| 亚洲成AV人在线观看天堂无码 | 大地资源中文在线观看免费版 | 亚洲中文字幕无码不卡电影| 久久无码国产| 亚洲一区爱区精品无码| 中文字幕精品一区二区精品| 无码国产精品一区二区免费vr | 亚洲中文字幕无码专区| 无码专区狠狠躁躁天天躁 | 无码超乳爆乳中文字幕久久| 亚洲AV无码不卡在线播放| 婷婷中文娱乐网开心| 午夜无码一区二区三区在线观看| 亚洲AV永久无码精品水牛影视| 中文字幕在线观看亚洲日韩| 人妻一区二区三区无码精品一区| 亚洲精品无码AV人在线播放| 欧美日韩中文国产一区| 精品一区二区无码AV| 无码AV天堂一区二区三区| 国产aⅴ无码专区亚洲av麻豆| 中文字幕无码成人免费视频| heyzo高无码国产精品| 无码人妻精品一区二区| 精品无码国产自产在线观看水浒传 | 国产成人无码a区在线视频| 亚洲av无码国产精品夜色午夜| 中文字幕一区二区三区乱码| 日韩精品无码一区二区中文字幕 | 国模GOGO无码人体啪啪|