考研數學常考知識點集合2
查看(344) 回復(0) |
|
|
發表于 2016-04-14 15:32
樓主
羅爾定理:設函數f(x)在閉區間[a,b]上連續(其中a不等于b),在開區間(a,b)上可導,且f(a)=f(b),那么至少存在一點ξ∈(a、b),使得f‘(ξ)=0。羅爾定理是以法國數學家羅爾的名字命名的。羅爾定理的三個已知條件的意義,①f(x)在[a,b]上連續表明曲線連同端點在內是無縫隙的曲線;②f(x)在內(a,b)可導表明曲線y=f(x)在每一點處有切線存在;③f(a)=f(b)表明曲線的割線(直線AB)平行于x軸;羅爾定理的結論的直幾何意義是:在(a,b)內至少能找到一點ξ,使f’(ξ)=0,表明曲線上至少有一點的切線斜率為0,從而切線平行于割線AB,與x軸平行。
|
回復話題 |
||
|
|