[1].Lu Yang, Uniform attractor for non-autonomous plate equation with a localized damping and a critical nonlinearity, Journal of Mathematical Analysis and Applications, 338 (2008), 1243-1254。
[2].Lu Yang and Cheng-Kui Zhong, Global attractor for plate equation with nonlinear damping, Nonlinear Analysis, TMA,69 (2008), 3802–3810。
[3].Lu Yang, Uniform attractor for non-autonomous hyperbolic equation with critical exponent, Applied Mathematics and Computation, 203 (2008), 895–902。
[4].Lu Yang, A perturbation method for numerical differentiation,Applied Mathematics and Computation,199 (2008), 368–374。
[5].Lu Yang, Uniform attractors for the closed process and applications to the reaction-diffusion equation with dynamical boundary condition, Nonlinear Analysis, TMA,71 (2009), 4012-4025。
[6].Lu Yang and Mei-Hua Yang, Attractors of non-autonomous reaction-diffusion equation with nonlinear boundary condition,Nonlinear Analysis, RWA,11(2010), 3946-3954。
[7].Lu Yang and Mei-Hua Yang, Long-time behavior of reaction-diffusion equationswith dynamical boundary condition,,Nonlinear Analysis, TMA, 74(2011), 3876–3883。
[8] Lu Yang, Asymptotic regularity and attractors of reaction-diffusion equation with nonlinear boundary condition, Nonlinear Analysis: RWA, 13(2012),1069-1079.
[9]Lu Yang, MeiHua Yang and P.E. Kloeden, Pullback attractors for non-autonomous quasi-linear parabolic equations with dynamic boundary conditions, Discrete Contin. Dyn. Syst. B,17(2012), 2635-2651.
[10] Lu Yang and MeiHua Yang, On uniform attractors fornon-autonomous p-Laplacian equation with dynamic boundary condition, Topol. Methods Nonlinear Anal., in press.
[11]. Xuan Wang, Lu Yang and Cheng-Kui Zhong, Attractors for the nonclassical diffusion equations with fading memory, Journal of Mathematical Analysis and Applications, 362(2010), 327–337.
[12]. Yue-Wei Liu, Lu Yang and Cheng-Kui Zhong, Asymptotic regularity for p-Laplacian equation, Journal of Mathematical Physics, 51(2010), 052702, 1-7.
[13]. Chun-You Sun, Lu Yang and Jin-Qiao Duan, Asymptotic behavior for a semilinear second order evolution equation, Tran.Amer.Math.Soc, 363(2011),6085–6109。